Add like
Add dislike
Add to saved papers

Body temperatures of hibernating little brown bats reveal pronounced behavioural activity during deep torpor and suggest a fever response during white-nose syndrome.

Hibernating animals use torpor [reduced body temperature (T b ) and metabolic rate] to reduce energy expenditure during winter. Periodic arousals to normal T b are energetically expensive, so hibernators trade off arousal benefits against energetic costs. This is especially important for bats with white-nose syndrome (WNS), a fungal disease causing increased arousal frequency. Little brown bats (Myotis lucifugus) with WNS show upregulation of endogenous pyrogens and sickness behaviour. Therefore, we hypothesized that WNS should cause a fever response characterized by elevated T b . Hibernators could also accrue some benefits of arousals with minimal T b increase, thus avoiding full arousal costs. We compared skin temperature (T sk ) of captive Myotis lucifugus inoculated with the WNS-causing fungus to T sk of sham-inoculated controls. Infected bats re-warmed to higher T sk during arousals which is consistent with a fever response. Torpid T sk did not differ. During what we term "cold arousals", bats exhibited movement following T sk increases of only 2.2 ± 0.3 °C, compared to >20 °C increases during normal arousals. Cold arousals occurred in both infected and control bats, suggesting they are not a pathophysiological consequence of WNS. Fever responses are energetically costly and could exacerbate energy limitation and premature fat depletion for bats with WNS. Cold arousals could represent an energy-saving mechanism for both healthy and WNS-affected bats when complete arousals are unnecessary or too costly. A few cold arousals were observed mid-hibernation, typically in response to disturbances. Cold arousals may, therefore, represent a voluntary restriction of arousal temperature instead of loss of thermoregulatory control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app