Add like
Add dislike
Add to saved papers

Histone demethylase PHF8 accelerates the progression of colorectal cancer and can be regulated by miR-488 in vitro.

Plant homeo domain finger protein 8 (PHF8), as an oncogene, has been highlighted in cancer development and progression. However, its clinical significance and underlying molecular mechanisms in colorectal cancer (CRC) remain to be fully elucidated. In the present study, the role of PHF8 in the progression of CRC was investigated. The mRNA and protein levels of PHF8 in tissues from patients with CRC and cell lines were detected using the reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Cell viability was analyzed using an MTT assay. The targeted genes were predicted using a bioinformatics algorithm and confirmed by a dual luciferase reporter assay. Cell migration was evaluated using a Transwell assay. The results demonstrated that the expression of PHF8 was significantly increased in tumor tissues from patients with CRC and was correlated with tumor‑node‑metastasis stage. In addition, it was found that overexpressed PHF8 was a predictor of poor overall survival rates in patients with CRC. PHF8 loss‑of‑function significantly inhibited proliferation and migration, and promoted apoptosis of CRC cells. In addition, bioinformatics methods demonstrated that PHF8 was a putative target of microRNA (miR)‑488, and miR‑488 was able to inhibit the expression of PHF8 in CRC cells. miR‑488 loss‑of‑function showed increased proliferation and migration, and these effects were reversed by sh‑PHF8 transfection in CRC cells. In vitro and in vivo experiments revealed that PHF8 accelerated cancer cell growth and migration, confirming the oncogenic role of PHF8 in human CRC. In conclusion, PHF8 and miR‑488 may serve as CRC biomarkers for the prediction of clinical outcome and provide a target for the diagnosis and therapy of CRC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app