Add like
Add dislike
Add to saved papers

Characterization and predicted role of microRNA expression profiles associated with early childhood obesity.

MicroRNAs (miRNAs) are implicated in the pathogenesis of obesity. The aim of the present study was to characterize the miRNA profile associated with early childhood obesity in peripheral blood mononuclear cells (PBMCs). A total of 12 children (6 obese and 6 lean controls) aged 36 months old to 48 months old were recruited. The miRNA expression profile from PBMCs was detected using the multiplexed NanoString nCounter system. Bioinformatics was employed to detect target genes and miRNA‑regulated biological function. A total of 9 differentially expressed miRNAs were identified in obese children compared with lean children (P<0.05). Among the 9 miRNAs, miR‑199a‑3p/miR‑199b‑3p and miR‑4454 presented at least a 1.5‑fold change in expression. A total of 643 potential target genes were regulated by the three miRNAs, and 291 of the potential genes were involved in a protein interaction network. Gene ontology annotation indicated that 291 potential genes were enriched in 14 biological process annotations and 2 molecular function annotations. miRNA dysregulation may be involved in early childhood obesity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app