Add like
Add dislike
Add to saved papers

Atorvastatin increases Fads1, Fads2 and Elovl5 gene expression via the geranylgeranyl pyrophosphate-dependent Rho kinase pathway in 3T3-L1 cells.

Numerous clinical studies have reported that statins increase the plasma concentration of arachidonic acid, which is an ω-6 long-chain polyunsaturated fatty acid (LCPUFA), and decrease the concentrations of eicosapentaenoic acid and docosahexaenoic acid, which are ω‑3 LCPUFAs. These findings indicate that statins may affect the endogenous synthesis of LCPUFAs, which is regulated by fatty acid desaturases (FADSs) and elongation of very long‑chain fatty acids proteins (ELOVLs). The present study aimed to investigate the roles of the intrinsic mevalonate cascade and Rho‑dependent pathway in statin‑induced regulation of these desaturases and elongases, as well as cell viability using mouse 3T3‑L1 cells. mRNA expression was analyzed by quantitative polymerase chain reaction. Treatment with atorvastatin decreased cell viability and increased the mRNA expression levels of Fads1, Fads2 and ELOVL fatty acid elongase 5 (Elovl5) in a dose‑dependent manner. Mevalonate and geranylgeranyl pyrophosphate (GGPP), but not cholesterol, fully reversed the atorvastatin‑induced downregulation of cell viability and upregulation of gene expression; however, mevalonate itself did not affect cell viability and gene expression. The Rho‑associated protein kinase inhibitor Y‑27632 inhibited the mevalonate‑ and GGPP‑mediated reversal of atorvastatin‑induced upregulation of Fads1, Fads2 and Elovl5. These findings indicated that statins may affect the endogenous synthesis of LCPUFAs by regulating Fads1, Fads2 and Elovl5 gene expression via the GGPP‑dependent Rho kinase pathway in mouse 3T3-L1 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app