Add like
Add dislike
Add to saved papers

Diverse BRCA1 and BRCA2 Reversion Mutations in Circulating Cell-Free DNA of Therapy-Resistant Breast or Ovarian Cancer.

Clinical Cancer Research 2017 November 2
Purpose: Resistance to platinum-based chemotherapy or PARP inhibition in germline BRCA1 or BRCA2 mutation carriers may occur through somatic reversion mutations or intragenic deletions that restore BRCA1 or BRCA2 function. We assessed whether BRCA1/2 reversion mutations could be identified in circulating cell-free DNA (cfDNA) of patients with ovarian or breast cancer previously treated with platinum and/or PARP inhibitors. Experimental Design: cfDNA from 24 prospectively accrued patients with germline BRCA1 or BRCA2 mutations, including 19 patients with platinum-resistant/refractory ovarian cancer and five patients with platinum and/or PARP inhibitor pretreated metastatic breast cancer, was subjected to massively parallel sequencing targeting all exons of 141 genes and all exons and introns of BRCA1 and BRCA2 Functional studies were performed to assess the impact of the putative BRCA1/2 reversion mutations on BRCA1/2 function. Results: Diverse and often polyclonal putative BRCA1 or BRCA2 reversion mutations were identified in cfDNA from four patients with ovarian cancer (21%) and from two patients with breast cancer (40%). BRCA2 reversion mutations were detected in cfDNA prior to PARP inhibitor treatment in a patient with breast cancer who did not respond to treatment and were enriched in plasma samples after PARP inhibitor therapy. Foci formation and immunoprecipitation assays suggest that a subset of the putative reversion mutations restored BRCA1/2 function. Conclusions: Putative BRCA1/2 reversion mutations can be detected by cfDNA sequencing analysis in patients with ovarian and breast cancer. Our findings warrant further investigation of cfDNA sequencing to identify putative BRCA1/2 reversion mutations and to aid the selection of patients for PARP inhibition therapy. Clin Cancer Res; 23(21); 6708-20. ©2017 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app