Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Generation of transgenic rodent malaria parasites by transfection of cell culture-derived merozoites.

Malaria Journal 2017 August 2
BACKGROUND: Malaria research is greatly dependent on and has drastically advanced with the possibility of genetically modifying Plasmodium parasites. The commonly used transfection protocol by Janse and colleagues utilizes blood stage-derived Plasmodium berghei schizonts that have been purified from a blood culture by density gradient centrifugation. Naturally, this transfection protocol depends on the availability of suitably infected mice, constituting a time-based variable. In this study, the potential of transfecting liver stage-derived merozoites was explored. In cell culture, upon merozoite development, infected cells detach from the neighbouring cells and can be easily harvested from the cell culture supernatant. This protocol offers robust experimental timing and temporal flexibility.

METHODS: HeLa cells are infected with P. berghei sporozoites to obtain liver stage-derived merozoites, which are harvested from the cell culture supernatant and are transfected using the Amaxa Nucleofector® electroporation technology.

RESULTS: Using this protocol, wild type P. berghei ANKA strain and marker-free PbmCherryHsp70 -expressing P. berghei parasites were successfully transfected with DNA constructs designed for integration via single- or double-crossover homologous recombination.

CONCLUSION: An alternative protocol for Plasmodium transfection is hereby provided, which uses liver stage-derived P. berghei merozoites for transfection. This protocol has the potential to substantially reduce the number of mice used per transfection, as well as to increase the temporal flexibility and robustness of performing transfections, if mosquitoes are routinely present in the laboratory. Transfection of liver stage-derived P. berghei parasites should enable generation of transgenic parasites within 8-18 days.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app