Add like
Add dislike
Add to saved papers

A unified ab initio approach to the correlated quantum dynamics of ultracold fermionic and bosonic mixtures.

We extent the recently developed Multi-Layer Multi-Configuration Time-Dependent Hartree method for Bosons for simulating the correlated quantum dynamics of bosonic mixtures to the fermionic sector and establish a unifying approach for the investigation of the correlated quantum dynamics of a mixture of indistinguishable particles, be it fermions or bosons. Relying on a multi-layer wave-function expansion, the resulting Multi-Layer Multi-Configuration Time-Dependent Hartree method for Mixtures (ML-MCTDHX) can be adapted to efficiently resolve system-specific intra- and inter-species correlations. The versatility and efficiency of ML-MCTDHX are demonstrated by applying it to the problem of colliding few-atom mixtures of both Bose-Fermi and Fermi-Fermi types. Thereby, we elucidate the role of correlations in the transmission and reflection properties of the collisional events. In particular, we present examples where the reflection (transmission) at the other atomic species is a correlation-dominated effect, i.e., it is suppressed in the mean-field approximation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app