Add like
Add dislike
Add to saved papers

Design of a silver nanoparticle for sensitive surface enhanced Raman spectroscopy detection of carmine dye.

Food Chemistry 2017 December 16
Flower-shaped silver nanoparticles have been successfully synthesized by a simple aqueous phase silver nitrate reduction by ascorbic acid in the presence of polyvinylpyrrolidone (PVP) surfactant. The nanoparticles diameters were adjusted from 450 to 1000nm with surface protrusions up to 10-25nm. The growth direction of silver nuclei is controlled by their degree of coating by PVP. The flower-shaped silver nanostructures obtained were used as stable Surface Enhanced Raman Scattering (SERS) substrates with high SERS activity for detecting Rhodamine 6G (R6G), at a concentration of only 10(-9)M, where the SERS signal is still clear. SERS spectra of the dye carmine was analysed and the characteristic bands were identified. An improved principle component analysis (PCA) was used for carmine detection, at concentrations down to 10(-8)M. The characteristic peaks of the carmine (1019, 1360, and 1573cm(-1)) remained at 10(-8)M. This indicated that the minimum detection limit of AgNP-based substrate for carmine is about 10(-8)M.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app