Add like
Add dislike
Add to saved papers

Synthesis and in vitro evaluation of peracetyl and deacetyl glycosides of eugenol, isoeugenol and dihydroeugenol acting against food-contaminating bacteria.

Food Chemistry 2017 December 16
Essential oils, as well as their separate components, have shown promise as alternatives to synthetic preservatives. Therefore, it would be interesting to optimize the effect of these compounds and to evaluate their applicability as additives in food. To this end, six peracetyl and deacetyl glycosides were synthesized from eugenol, isoeugenol and dihydroeugenol. All of the glycosides were characterized by IR and NMR. The synthesized compounds and their aglycones were evaluated to determine their minimal bactericidal concentrations (MBC) against the spoilage food bacteria Escherichia coli, Listeria monocytogenes, Staphylococcus aureus and Salmonella enteritidis. All deacetyl glycosides were about twice as active as aglycones, and the peracetyl glycosides were, in most cases, equipotent with aglycones. The deacetyl glycoside of dihydroeugenol proved to be the most active compound against the bacteria tested, with a 0.37% MBC v/v for E. coli and 0.18% v/v for the other bacteria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app