Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The Importance of Mitophagy in Maintaining Mitochondrial Function in U373MG Cells. Bafilomycin A1 Restores Aminochrome-Induced Mitochondrial Damage.

Aminochrome, an orthoquinone formed during the dopamine oxidation of neuromelanin, is neurotoxic because it induces mitochondria dysfunction, protein degradation dysfunction (both autophagy and proteasomal systems), α-synuclein aggregation to neurotoxic oligomers, neuroinflammation, and oxidative and endoplasmic reticulum stress. In this study, we investigated the relationship between aminochrome-induced autophagy/lysosome dysfunction and mitochondrial dysfunction in U373MGsiGST6 cells. Aminochrome (75 μM) induces mitochondrial dysfunction as determined by (i) a significant decrease in ATP levels (70%; P < 0.001) and (ii) a significant decrease in mitochondrial membrane potential (P < 0.001). Interestingly, the pretreatment of U373MGsiGST6 cells with 100 nM bafilomycin-A1, an inhibitor of lysosomal vacuolar-type H+ -ATPase, restores ATP levels, mitochondrial membrane potential, and mitophagy, and decreases cell death. These results reveal (i) the importance of macroautophagy/the lysosomal degradation system for the normal functioning of mitochondria and for cell survival, and (ii) aminochrome-induced lysosomal dysfunction depends on the aminochrome-dependent inactivation of the vacuolar-type H+ -ATPase, which pumps protons into the lysosomes. This study also supports the proposed protective role of glutathione transferase mu2-2 (GSTM2) in astrocytes against aminochrome toxicity, mediated by mitochondrial and lysosomal dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app