JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Tumor endothelial cells accelerate tumor metastasis.

Cancer Science 2017 October
Tumor metastasis is the main cause of cancer-related death. Understanding the molecular mechanisms underlying tumor metastasis is crucial to control this fatal disease. Several molecular pathways orchestrate the complex biological cell events during a metastatic cascade. It is now well known that bidirectional interaction between tumor cells and their microenvironment, including tumor stroma, is important for tumor progression and metastasis. Tumor stromal cells, which acquire their specific characteristics in the tumor microenvironment, accelerate tumor malignancy. The formation of new blood vessels, termed as tumor angiogenesis, is a requirement for tumor progression. Tumor blood vessels supply nutrients and oxygen and also provide the route for metastasis. Tumor endothelial cells, which line tumor blood vessels, also exhibit several altered phenotypes compared with those of their normal counterparts. Recent studies have emphasized "angiocrine factors" that are released from tumor endothelial cells and promote tumor progression. During intravasation, tumor cells physically contact tumor endothelial cells and interact with them by juxtacrine and paracrine signaling. Recently, we observed that in highly metastatic tumors, tumor endothelial cells interact with tumor cells by secretion of a small leucine-rich repeat proteoglycan known as biglycan. Biglycan from tumor endothelial cells stimulates the tumor cells to metastasize. In the present review, we highlight the role of tumor stromal cells, particularly endothelial cells, in the initial steps of tumor metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app