Add like
Add dislike
Add to saved papers

ELR + chemokine-mediated neutrophil recruitment is involved in 2,4,6-trinitrochlorobenzene-induced contact hypersensitivity.

Contact dermatitis is a form of delayed-type hypersensitivity characterized by localized thickening, papules, redness and vesicles of the skin. A model of contact dermatitis involving repeated challenge of a hapten is adapted to assess dermatitis as characterized by skin thickening. Recently, it was reported that neutrophils have crucial roles in contact hypersensitivity. We thus examined the involvement of CXC chemokines bearing the glutamic acid-leucine-arginine (ELR) motif ("ELR+ chemokines") and neutrophils in the ear swelling induced by 2,4,6-trinitrochlorobenzene (TNCB) challenges in the present study. Mice were sensitized by application of TNCB on their abdominal skin. They were then challenged thrice with TNCB to the ear. The CXCR2 antagonist SB225002 (9 mg/kg, i.p.) was administered before each TNCB challenge. Gene expressions and protein levels of the ELR+ chemokines CXCL1, 2 and 5 was increased markedly in mouse ear after the final TNCB challenge. In addition, we indicated that gene expression of CXCL1 was enhanced in the epidermis and dermis upon TNCB challenge. Expression of the CXCL2 gene was enhanced in the epidermis, and that of the CXCL5 gene was enhanced in the dermis. The swelling induced by TNCB challenges was significantly attenuated by SB225002. Furthermore, the increases in myeloperoxidase activity, and expression of myeloperoxidase and neutrophil elastase induced by TNCB challenge in mouse ear were inhibited by SB225002. These data suggest that ear swelling resulting from TNCB challenges might be concerned by upregulated ELR+ chemokine-induced neutrophil recruitment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app