Add like
Add dislike
Add to saved papers

Inhibitory effect ofquercetinon titaniumparticle-inducedendoplasmic reticulum stress (ERS)-related apoptosisandin vivoosteolysis.

Bioscience Reports 2017 July 32
Wear particle-induced periprosthetic osteolysis is the main cause of aseptic loosening of orthopaedic implants. The aim of this study is to determine the protective effect of quercetin (QUE) against titanium (Ti) particle-induced ERS-related apoptosis and osteolysis. In this study, RAW264.7 cells were pretreated with different concentrations (40, 80, and 160 μmol/l) of QUE for 30 min and then treated with Ti particle (5 mg/ml) for 24 h. Cell viability and apoptosis were determined using MTT assay and Annexin V-FITC apoptosis detection kit, respectively. Protein and mRNA expressions of ERS-related genes were examined by western blot and real-time PCR, respectively. The release of inflammatory cytokines was detected by ELISA. Then a mouse calvarial osteolysis model was established. Histological sections of calvaria were stained with H&E or TRAP. The results showed that Ti particle reduced cell viability and induced apoptosis in RAW264.7 macrophages. The cytotoxic effects of Ti particle were dramatically inhibited by QUE pretreatment. Interestingly, we found that QUE also significantly reduced Ti particle-induced up-regulation of the expression levels of PERK, IRE1, GRP78, CHOP, caspase-12 and caspase-3 and enhanced the down-regulation of Bcl-2. In addition, QUE decreased Ti particle-induced inflammatory cytokines release from RAW264.7 cells. Moreover, treatment with QUE markedly decreased osteoclast number. In a mouse calvarial osteolysis model, QUE inhibited Ti particle-induced osteolysis in vivo by inhibiting osteoclast formation and expressions of ERS-related genes. In conclusion, QUE can protect RAW264.7 cells from Ti particle-induced ERS-related apoptosis and suppress calvarial osteolysis in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app