Add like
Add dislike
Add to saved papers

SIRT3 inhibits Ang II-induced transdifferentiation of cardiac fibroblasts through β-catenin/PPAR-γ signaling.

Life Sciences 2017 October 2
AIMS: Cardiac fibrosis is an inevitable process of numerous cardiovascular diseases in which the transdifferentiation of cardiac fibroblasts plays a pivotal role. Sirtuin3 (SIRT3) has been believed to protect against cardiac fibrosis. However, the mechanism underlying this beneficial effect has not yet been elucidated. In this study, we investigated the potential mechanism of SIRT3 on the inhibition of fibroblast-to-myoblast transdifferentiation.

MAIN METHODS: Cells were stimulated by angiotension II (Ang II) with SIRT3 overexpression or knockdown. Also, PPARγ agonist (Pioglitazone PIO) and inhibitor (GW9662) were used to confirm the antifibrotic effect of PPARγ. Western blot, qRT-PCR, CCK-8 and immunofluorescence staining analysis were used for investigation.

KEY FINDINGS: Our data demonstrated that overexpression of SIRT3 prevented the transdifferentiation of CFs while SIRT3 knockdown promoted the process. Simultaneously, SIRT3 overexpression increased total PPARγ expression and suppressed the acetylated PPARγ. Besides, pretreatment with PPARγ agonist, pioglitazone protected CFs from transdifferentiation while PPARγ inhibitor prevented the protective effect of SIRT3. In addition, we have found that SIRT3 upregulated the expression of PPARγ by degeration of β-catenin.

SIGNIFICANCE: Our findings indicate that this newly identified SIRT3/β-catenin/PPAR-γ axis will provide novel insight into the understanding of the mechanism of transdifferentiation of CFs to myofibroblasts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app