Add like
Add dislike
Add to saved papers

The effect of polymeric membrane surface on HaCaT cell properties.

Micron 2017 October
The control of the surface properties is an important issue for applicability of polymer membranes interacting with cells. In this work, the influence of surface roughness and stiffness of two polymer membranes on viability and mechanical properties of keratinocytes was studied. Terpolimer polyglicolide, polycaprolactone and polylactide, (PGA-PCL-PLA) and copolymer polycaprolactone, polyglicolide (PGA-PCL) substrates were used for membranes fabrication. Surface modification - the hydrolysis of the obtained membranes was carried out. The analysis of membranes' surface properties revealed that RMS surface roughness and roughness factor of PGA-PCL-PLA membrane decreased after hydrolysis while its stiffness increased. In contrast, the PGA-PCL membrane stiffness was only slightly affected by NaOH treatment. Immortalized human keratinocytes (HaCaT) were grown under standard conditions on the surface of the studied membranes and characterized by means of atomic force microscopy and fluorescence microcopy. The results showed the substrate-dependent effect on cells' properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app