JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Self-assembling anticaries mucosal vaccine containing ferritin cage nanostructure and glucan-binding region of S. mutans glucosyltransferase effectively prevents caries formation in rodents.

Anticaries protein vaccines that induce a mucosal immune response are not effective. Therefore, development of effective and convenient anticaries vaccines is a priority of dental research. Here we generated self-assembling nanoparticles by linking the glucan-binding region of Streptococcus mutans glucosyltransferase (GLU) to the N-terminal domain of ferritin to determine whether these novel nanoparticles enhanced the immunogenicity of an anticaries protein vaccine against GLU in rodents. We constructed the expression plasmid pET28a-GLU-FTH and purified the proteins from bacteria using size-exclusion chromatography. BALB/c mice were used to evaluate the ability of GLU-ferritin (GLU-FTH) nanoparticles to induce GLU-specific mucosal and systemic responses. The protective efficiency of GLU-FTH nanoparticles was compared with that of GLU alone or a mixture of GLU and poly(I:C) after administering an intranasal infusion to Wistar rats. The phagocytosis and maturation of dendritic cells (DCs) exposed in vitro to the nanoparticles were assessed using flow cytometry. The GLU-FTH nanoparticle vaccine elicited significantly higher levels of GLU-specific antibodies compared with GLU or a mixture of GLU and poly(I:C). Immunization with GLU-FTH achieved lower caries scores compared with those of the other vaccines. Administration of GLU-FTH nanoparticles enhanced phagocytosis by DCs and their maturation. Thus, self-assembling GLU-FTH is a highly effective anticaries mucosal vaccine that enhanced antibody production and inhibited S. mutans infection in rodents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app