Add like
Add dislike
Add to saved papers

Effect of Concentration on the Supramolecular Polymerization Mechanism via Implicit-Solvent Coarse-Grained Simulations of Water-Soluble 1,3,5-Benzenetricarboxamide.

We report an implicit-solvent coarse-grained (CG) model for a water-soluble 1,3,5-benzenetricarboxamide (BTA) supramolecular polymer. The technical advances guaranteed by this CG model allow simulation of the self-assembly of 1000 BTA monomers and easy variation of the BTA concentration into the system down to experimental dilute conditions. In this way, we can monitor the mechanism of supramolecular polymerization as a function of the concentration at submolecular resolution exceeding the microsecond time scale. While increasing the concentration produces rapid formation of large disordered clusters that are then converted into BTA fibers, moving to very dilute concentrations favors early ordering of the oligomers in solution even at small sizes. Interestingly, we observe that below a certain concentration the oligomers that dynamically grow in solution during the self-assembly present the same level (and amplification) of order of prestacked equilibrated oligomers of the same size, meaning that concentration-dependent kinetic effects have disappeared from the polymerization mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app