Add like
Add dislike
Add to saved papers

Kinematics and metabolic cost of running on an irregular treadmill surface.

The purpose of this study was to investigate the kinematic and metabolic effects of running on an irregular surface. We also examined how altering the frontal plane foot angle (inversion/eversion) at contact using real-time visual feedback would affect these other variables. Sixteen participants completed three running bouts lasting 5-7 minutes each on an irregular surface (IS) treadmill, a traditional smooth surface (SS) treadmill, and on SS while receiving visual feedback of the frontal plane foot angle at contact (SSF) with a goal of matching IS foot angle on SS. Frontal plane foot angle increased 40% from IS to SS (IS: 8.4 ± 4.09°, SS: 11.8 ± 4.52°, P < 0.0001, ES 1.40). Knee flexion angle at contact decreased 33% from IS to SS (IS: 9.2 ± 4.88°, SS: 6.2 ± 5.03°, P < 0.0001, ES 1.30). Rate of oxygen consumption decreased by 10% from IS to SS (IS: 37.9 ± 5.68 ml·kg-1 ·min-1 , SS: 34.1 ± 5.07 ml·kg-1 ·min-1 , P < 0.0001, ES 3.05). PSD of leg accelerations decreased by 38% (IS: 0.17 ± 0.07 g2 /Hz, SS: 0.106 ± 0.05 g2 /Hz, P < 0.000, ES 1.69). Frontal plane foot angle decreased by 14% from SS to SSF (SS: 11.8 ± 4.52°, SSF: 10.1 ± 4.42°, P = 0.027. ES 0.62) but did not result in significant changes in any other variables. There were no significant differences in shock attenuation between any conditions (IS: -9.8 ± 2.26 dB, SS: -9.5 ± 3.12 dB, SSF: -9.9 ± 2.62 dB, P = 0.671). Running with greater eversion on the irregular surface may be an attempt by runners to reduce the perceived potential of an inversion ankle sprain. As a partial compensation for the decreased foot angle, runners increased knee flexion. This maintained shock attenuation but increased the rate of oxygen consumption. Altering the foot angle at contact using feedback on the SS caused the knee angle at contact to increase, but did not change shock attenuation or metabolic cost.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app