Add like
Add dislike
Add to saved papers

Manifestation of hopping conductivity and granularity within phase diagrams of LaO 1-x F x BiS 2 , Sr 1-x La x FBiS 2 and related BiS 2 -based compounds.

Layered BiS [Formula: see text] -based series, such as LaO [Formula: see text] F [Formula: see text] BiS [Formula: see text] and Sr [Formula: see text] La [Formula: see text] FBiS [Formula: see text] , offer ideal examples for studying normal and superconducting phase diagram of a solid solution that evolves from a nonmagnetic band-insulator parent. We constructed typical [Formula: see text] phase diagrams of these systems based on events occurring in thermal evolution of their electrical resistivity, [Formula: see text]. Overall evolution of these diagrams can be rationalized in terms of (i) Mott-Efros-Shklovskii scenario which, within the semiconducting [Formula: see text] regime ([Formula: see text] metal-insulator transition), describes the doping influence on the thermally activated hopping conductivity. (ii) A granular metal (superconductor) scenario which, within [Formula: see text], describes the evolution of normal and superconducting properties in terms of conductance g, Coulomb charging energy E c and Josephson coupling J; their joint influence is usually captured within a [Formula: see text] phase diagram. Based on analysis of the granular character of [Formula: see text], we converted the [Formula: see text] diagrams into projected g - T diagrams which, being fundamental, allow a better understanding of evolution of various granular-related properties (in particular the hallmarks of normal-state [Formula: see text] feature and superconductor-insulator transition) and how such properties are influenced by x, pressure or heat treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app