Add like
Add dislike
Add to saved papers

Structure and Function of Trypsin-Loaded Fibrinolytic Liposomes.

Protease encapsulation and its targeted release in thrombi may contribute to the reduction of haemorrhagic complications of thrombolysis. We aimed to prepare sterically stabilized trypsin-loaded liposomes (SSLT ) and characterize their structure and fibrinolytic efficiency. Hydrogenated soybean phosphatidylcholine-based SSLT were prepared and their structure was studied by transmission electron microscopy combined with freeze fracture (FF-TEM), Fourier transform infrared spectroscopy (FT-IR), and small-angle X-ray scattering (SAXS). Fibrinolytic activity was examined at 45, 37, or 24°C on fibrin or plasma clots with turbidimetric and permeation-driven lysis assays. Trypsin was shown to be attached to the inner surface of vesicles (SAXS and FF-TEM) close to the lipid hydrophilic/hydrophobic interface (FT-IR). The thermosensitivity of SSLT was evidenced by enhanced fibrinolysis at 45°C: time to reduce the maximal turbidity to 20% decreased by 8.6% compared to 37°C and fibrin degradation product concentration in the permeation lysis assay was 2-fold to 5-fold higher than that at 24°C. SSLT exerted its fibrinolytic action on fibrin clots under both static and dynamic conditions, whereas plasma clot dissolution was observed only in the permeation-driven assay. The improved fibrinolytic efficiency of SSLT under dynamic conditions suggests that they may serve as a novel therapeutic candidate for dissolution of intravascular thrombi, which are typically exposed to permeation forces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app