Add like
Add dislike
Add to saved papers

Unambiguous Imaging of Static Scenes and Moving Targets with the First Chinese Dual-Channel Spaceborne SAR Sensor.

Sensors 2017 July 26
Multichannel synthetic aperture radar (SAR) is a breakthrough given the inherent limitation between high-resolution and wide-swath (HRWS) faced with conventional SAR. This paper aims to obtain unambiguous imaging of static scenes and moving targets with the first Chinese dual-channel spaceborne SAR sensor. We propose an integrated imaging scheme with the dual-channel echoes. In the imaging scheme, the subspace-based error estimation algorithm is first applied to the spaceborne multichannel SAR system, followed by the reconstruction algorithm prior to imaging. The motion-adapted reconstruction algorithm for moving target imaging is initially achieved with the spaceborne multichannel SAR system. The results exhibit an effective suppression of azimuth ambiguities and false targets with the proposed process. This paper verifies the accuracy of the subspace-based channel error estimator and the feasibility of the motion-adapted reconstruction algorithm. The proposed imaging process has prospects for future HRWS SAR systems with more channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app