Add like
Add dislike
Add to saved papers

Exogenous nitric oxide enhances the prophylactic effect of aminoguanidine, a preferred iNOS inhibitor, on bleomycin-induced fibrosis in the lung: Implications for the direct roles of the NO molecule in vivo.

OBJECTIVE: Inducible nitric oxide synthase (iNOS) aggravates and endothelial nitric oxide synthase (eNOS) ameliorates fibrosis in the lung. Our previous study demonstrated that aminoguanidine (AG), a preferred iNOS inhibitor, prevents bleomycin-induced injury and fibrosis in the lung. The diethylenetriamine nitric oxide adduct (DETA/NO) is a slow-release NO donor. Here, to clarify the exact role of the nitric oxide (NO) molecule in the pathogenesis of pulmonary fibrosis in vivo, we observed the effects of inhalation of aerosolized DETA/NO on fibrosis in the lungs of bleomycin-exposed rats with AG treatment, including the effects on the myofibroblast number, collagen deposition, peroxynitrite anion (ONOO- ) formation, and injury in the lung.

DESIGN AND METHODS: Rats received a single intratracheal instillation of bleomycin or normal saline (NS) on day 0, followed by a daily intraperitoneal injection of AG or NS from day 1 to day 13. Each group was additionally given a daily inhalation of DETA/NO or placebo from day 1 to day 13. On day 14, half of the rats in each group was euthanized, and plasma nitrite and nitrate (NOx), myofibroblasts, type I collagen, ONOO- and injury in the lung were estimated by the Griess reaction, western blotting, immunohistochemical staining, sirius red staining, and hematoxylin and eosin (HE) staining, respectively. On day 28, the other half of the rats in each group was euthanized, and the total collagen of the lung was evaluated by hydroxyproline assay.

RESULTS: ① At the day 14 time point, AG reduced the plasma NOx level in bleomycin rats, while this drug had no significant effect on sham rats. Inhalation of aerosolized DETA/NO increased the plasma NOx level of bleomycin + AG rats, sham rats and sham + AG rats. However, due to large areas of airspace obliteration in the lungs of bleomycin rats, DETA/NO inhalation had no significant effect on the plasma NOx level in these rats. ② At the day 14 time point, AG reduced ONOO- formation (marked by nitrotyrosine, NT), injury, myofibroblast number, and type I collagen deposition in the lungs of bleomycin rats, while this drug had no significant impact on the above parameters in the lungs of sham rats. Interestingly, DETA/NO inhalation enhanced the preventive effects afforded by AG on myofibroblast number and type I collagen deposition, but had no significant impact on ONOO- and injury in lung. ③ At the day 28 time point, because rats were not exposed to DETA/NO after day 13, there was no significant difference of the plasma NOx level in sham rats, sham + AG rats, bleomycin rats, and bleomycin + AG rats between DETA/NO inhalation and placebo inhalation. Interestingly, rats administered both DETA/NO and AG still showed a reduction in total collagen of the entire lung compared to rats administered AG alone at this time point.

CONCLUSIONS: Exogenous NO enhances the prophylactic effect afforded by AG on the myofibroblast number and collagen deposition in the lungs of bleomycin-treated rats in vivo. These results suggest that NO has a direct antifibrotic effect in lungs, except for the formation of ONOO- in the development of pulmonary fibrosis in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app