Add like
Add dislike
Add to saved papers

Chern Insulator and Chern Half-Metal States in the Two-Dimensional Spin-Gapless Semiconductor Mn2C6S12.

Two-dimensional metal-organic frameworks (2D-MOFs) with exotic electronic structures are drawing increasing attention. Here, using first-principles calculations, we demonstrate a spin-gapless MOF, namely Mn2C6S12 with the coexistence of spin-polarized Dirac cone and parabolic degenerate points. The Curie temperature evaluated from Monte Carlo simulations implies Mn2C6S12 possessing stable ferromagnetism at room temperature. Taking the spin-orbit coupling into account, the Dirac cone is gaped and the degenerate points are lifted, giving rise to multiple topologically nontrivial states with nonzero Chern number, which imply the possibility of Mn2C6S12 to be a Chern insulator and a Chern half-metal. Our results offer versatile platforms for achieving spin filtering or quantum anomalous Hall effect with promising application in spintronics devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app