Add like
Add dislike
Add to saved papers

Mechanistic insight into pyrene removal by natural sepiolites.

This paper investigates the sorption characteristics and mechanisms of pyrene onto two types of natural sepiolite-brown (B-Sep) and white (W-Sep). The effects of relevant properties such as clay content, surface area, pore diameter and volume, divalent cations, and organic carbon content were investigated by single component batch adsorption systems. The results suggest that pyrene has high affinity for both sepiolite and its sorption behavior could be mainly affected by exchangeable strongly hydrated cations such as Ca2+ and H2 O in the zeolite-like channels and by open channel defects (OCD) structures but no so much by the large number of Si-OH groups located on the sepiolite's basal surfaces. Mesoporosity rather than surface area largely controls the sorption capacity and intensity of both sepiolites. This is shown by the increase in pore volume that exhibited the greatest increase in BET surface area. Particle size and morphological changes of both sepiolites following pyrene adsorption determined by FE-SEM showed that the sepiolite fibers are much longer than their widths, which are only several laths (several nanometers). This is a result of growth, mostly along the c-axis, at the expense of the diffusion of pyrene molecules through aqueous solution. As a consequence, a significant fibrous morphology is produced following the adsorption of pyrene by both sepiolites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app