Add like
Add dislike
Add to saved papers

TNFα and IL-1β in the synovial fluid facilitate mucosal-associated invariant T (MAIT) cell migration.

Cytokine 2017 November
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that primarily affect the joints and inflammatory cell migration into inflamed articular sites contribute to this disease. Among the inflammatory cells, human mucosal-associated invariant T (MAIT) cells were recently recognized as critical cellular component with a pathological role in RA. However, their migratory characteristics are poorly understood. The aim of this study was to determine whether human MAIT cells preferentially traffick to inflamed synovial sites in rheumatoid arthritis patients and to elucidate the underlying mechanism. First, we found that TNFα and IL-1β were elevated in synovial fluid (SF) of RA patients, which resulted in increased expression of E-selectin, ICAM-1 and V-CAM-1 on blood vessel endothelial cells. To understand whether TNFα and IL-1β in the SF facilitated MAIT cell migration, we analyzed CD161+ TCRα7.2+ MAIT and other CD3+ T cells for differences in migratory capacity. Collectively, our results demonstrate that TNFα and IL-1β in the SF facilitated MAIT cell migration dependent on expression of selectin ligand, sialyl LewisX (sLeX ) and CCR6 on MAIT cells. We also showed that MAIT cells in the SF from RA patients equipped upregulated sLeX compared to the peripheral blood of RA patients and healthy persons, which suggest that TNFα and IL-1β mediated expression of E-selectin preferentially attract sLeX mediated MAIT cell migration into the SF of RA patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app