JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Identification and comparison of candidate odorant receptor genes in the olfactory and non-olfactory organs of Holotrichia oblita Faldermann by transcriptome analysis.

A sophisticated olfactory system is part of the explanation for the prominence of insects among animals because of the essential roles of the olfactory system in foraging, host seeking, mating, ovipositing and avoiding toxic substances. In this study, we sequenced and analysed the transcriptomes of olfactory tissue (antennae) and non-olfactory tissue (legs) of the scarab beetle, Holotrichia oblita Faldermann, which is a serious underground pest in China. We obtained approximately 80.2 million 150bp reads that were assembled into 61,038 unigenes with an average length of 890bp. Among the transcripts, 70% of the unigenes were annotated. A total of 44 odorant receptors (ORs) and 9 ionotropic receptors (IRs) were identified based on homology searches. Then, quantitative real-time PCR experiments were performed to investigate the expression patterns of 32 putative chemosensory genes. The results showed that these genes were highly expressed in olfactory organs (antennae) and might play a key role in the olfaction-related behaviours in H. oblita. Based on the results of our phylogenetic analysis and the detailed tissue and sex-biased expression characteristics, the different roles of the receptor proteins in the olfactory system were also indicated. The results of this study will provide the foundation for further understanding of the olfactory odorant receptors of H. oblita at the molecular level and ultimately help to develop novel targets for manipulating this pest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app