Add like
Add dislike
Add to saved papers

Treatment with a programmed cell death-1-specific antibody has little effect on afatinib- and naphthalene-induced acute pneumonitis in mice.

Although several antibodies developed to target programmed cell death-1 (PD-1) and its ligand (PD-L1) have demonstrated great promise for the treatment of non-small cell lung cancer (NSCLC), and other malignancies, these therapeutic antibodies can cause pneumonitis. Furthermore, epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-induced pneumonitis was reported after treatment with anti PD-1 antibodies. We previously demonstrated that mice with naphthalene-induced airway epithelial injury developed severe gefitinib-induced pneumonitis through a neutrophil-dependent mechanism. The present study aimed to investigate whether treatment with afatinib, an EGFR-TKI that effectively targets EGFR mutation-positive NSCLC, and anti PD-1 antibodies induces pneumonitis in mice. C57BL/6J mice were treated intraperitoneally with naphthalene (200 mg/kg) on day 0. Afatinib (20 mg/kg) was administered orally on days -1 to 13. An anti-PD-1 antibody (0.2 mg/mice) was also administered intraperitoneally every 3 days from day 1 until day 13. The bronchoalveolar lavage fluid (BALF) and lung tissues were sampled on day 14. As observed previously with gefitinib, afatinib significantly increased the severity of histopathologic findings and the level of protein in BALF on day 14, compared to treatment with naphthalene alone. A combined anti-PD-1 antibody and afatinib treatment after naphthalene administration had yielded the same histopathological grade of lung inflammation as did afatinib treatment alone. Our results suggest that anti-PD-1 antibody treatment has little effect on afatinib-induced lung injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app