Add like
Add dislike
Add to saved papers

Cognitive Impairment and Brain and Peripheral Alterations in a Murine Model of Intraventricular Hemorrhage in the Preterm Newborn.

Germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH) remains a serious complication in the preterm newborn. The significant increase of survival rates in extremelye preterm newborns has also contributed to increase the absolute number of patients developing GMH-IVH. However, there are relatively few available animal models to understand the underlying mechanisms and peripheral markers or prognostic tools. In order to further characterize central complications and evolution of GMH-IVH, we injected collagenase intraventricularly to P7 CD1 mice and assessed them in the short (P14) and the long term (P70). Early complications at P14 included ventricle enlargement, increased bleeding, and inflammation. These alterations were maintained at P70, when increased tau phosphorylation and decreased neurogenesis were also observed, resulting in impaired learning and memory in these early adult mice. We additionally analyzed peripheral blood biomarkers in both our mouse model and preterm newborns with GMH-IVH. While MMP9 levels were not significantly altered in mice or newborns, reduced gelsolin levels and increased ubiquitin carboxy-terminal hydrolase L1 and tau levels were detected in GMH-IVH patients at birth. A similar profile was observed in our mouse model after hemorrhage. Interestingly, early changes in gelsolin and carboxy-terminal hydrolase L1 levels significantly correlated with the hemorrhage grade in newborns. Altogether, our data support the utility of this animal model to reproduce the central complications and peripheral changes observed in the clinic, and support the consideration of gelsolin, carboxy-terminal hydrolase L1, and tau as feasible biomarkers to predict the development of GMH-IVH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app