Add like
Add dislike
Add to saved papers

Phage-host associations in a full-scale activated sludge plant during sludge bulking.

Sludge bulking, a notorious microbial issue in activated sludge plants, is always accompanied by dramatic changes in the bacterial community. Despite large numbers of phages in sludge systems, their responses to sludge bulking and phage-host associations during bulking are unknown. In this study, high-throughput sequencing of viral metagenomes and bacterial 16S rRNA genes were employed to characterize viral and bacterial communities in a sludge plant under different sludge conditions (sludge volume index (SVI) of 180, 132, and 73 ml/g). Bulking sludges (SVI > 125 ml/g) taken about 10 months apart exhibited similar bacterial and viral composition. This reflects ecological resilience of the sludge microbial community and indicates that changes in viral and bacterial populations correlate closely with each other. Overgrowth of "Candidatus Microthrix parvicella" led to filamentous bulking, but few corresponding viral genotypes were identified. In contrast, sludge viromes were characterized by numerous contigs associated with "Candidatus Accumulibacter phosphatis," suggesting an abundance of corresponding phages in the sludge viral community. Notably, while nitrifiers (mainly Nitrosomonadaceae and Nitrospiraceae) declined significantly along with sludge bulking, their corresponding viral contigs were identified more frequently and with greater abundance in the bulking viromes, implying that phage-mediated lysis might contribute to the loss of autotrophic nitrifiers under bulking conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app