Add like
Add dislike
Add to saved papers

MicroRNA-18a promotes proliferation and metastasis in hepatocellular carcinoma via targeting KLF4.

Oncotarget 2017 July 18
MicroRNAs (miRNAs) are short, non-coding and endogenous RNAs that played as important roles in the proliferation and metastasis of tumors. In this study, we determined the role of miR-18a in the regulation of HCC cell motility. We showed that miR-18a expression was upregulated in human HCC tissues and cell lines. Moreover, Elevated expression of miR-18a promoted the HCC cell proliferation and migration. KLF4 was identified as a direct target of miR-18a in HCC cells. Furthermore, overexpression of KLF4 attenuated the effects of miR-18a on the regulation of HCC cell motility. The expression of KLF4 was negatively associated with the expression of miR-18a expression in HCC tissues. We also showed that the cell cycle inhibitor p21 was aberrantly downregulated in HCC cells, whereas this inhibition was reversed by miR-18a inhibitor. These data indicated that miR-18a may play a positive role in hepatocellular carcinoma by promoting the proliferation and migration of HCC cells through targeting KLF4 as well as downstream p21.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app