Add like
Add dislike
Add to saved papers

Enhanced radiosensitizing by sodium glycididazole in a recurrent esophageal carcinoma tumor model.

Oncotarget 2017 July 11
Re-irradiation is challenging for esophageal cancer patients with local-regional recurrence after initial radiotherapy. The purpose of this study is to establish a recurrent esophageal tumor model and investigate radiosensitizing effects of sodium glycididazole (CMNa). Tumor models were established by pre-irradiation (0 Gy, 10 Gy or 20 Gy) to the right hind leg of the nude mice 24 hours before tumor transplantation (ECA109 human esophageal carcinoma cells). Tumor growth curves were analyzed. Hypoxic microenvironment was exhibited in tumor frozen slides stained for pimonidazole, Hoechst 33342, hematoxylin-eosin and CD34. Mice bearing primary (0 Gy pre-irradiation) and recurrent (10 Gy pre-irradiation) tumors were randomized into control (no treatment), radiation (30 Gy in 3 weekly fractionations), or radiation combined with CMNa (1 mmol/kg i.p. injected 60 min before radiation) respectively. The data showed tumors from 10 Gy and 20 Gy pre-irradiated sites grew significantly slower than those in the 0 Gy pre-irradiated group. The recurrent xenograft tumors showed increased necrotic fractions, decreased micro-vascular density, increased pimonidazole-positive fraction, and decreased Hoechst-positive fraction. In the primary xenograft tumors, CMNa adding to radiation did not lead to significant tumor growth delay than radiation alone. However, for the recurrent tumor model, the growth rate was remarkably reduced as CMNa combined with radiation as comparison with radiation alone. In conclusion, the recurrent esophageal xenograft model with tumor bed effect was successfully established characterized by slow growth, increased hypoxia fraction and decreased blood flow. Significant radiosensitization by CMNa was demonstrated in the recurrent model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app