Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Transglutaminase 2 Inhibition Reverses Mesenchymal Transdifferentiation of Glioma Stem Cells by Regulating C/EBPβ Signaling.

Cancer Research 2017 September 16
Necrosis is a hallmark of glioblastoma (GBM) and is responsible for poor prognosis and resistance to conventional therapies. However, the molecular mechanisms underlying necrotic microenvironment-induced malignancy of GBM have not been elucidated. Here, we report that transglutaminase 2 (TGM2) is upregulated in the perinecrotic region of GBM and triggered mesenchymal (MES) transdifferentiation of glioma stem cells (GSC) by regulating master transcription factors (TF), such as C/EBPβ, TAZ, and STAT3. TGM2 expression was induced by macrophages/microglia-derived cytokines via NF-κB activation and further degraded DNA damage-inducible transcript 3 (GADD153) to induce C/EBPβ expression, resulting in expression of the MES transcriptome. Downregulation of TGM2 decreased sphere-forming ability, tumor size, and radioresistance and survival in a xenograft mouse model through a loss of the MES signature. A TGM2-specific inhibitor GK921 blocked MES transdifferentiation and showed significant therapeutic efficacy in mouse models of GSC. Moreover, TGM2 expression was significantly increased in recurrent MES patients and inversely correlated with patient prognosis. Collectively, our results indicate that TGM2 is a key molecular switch of necrosis-induced MES transdifferentiation and an important therapeutic target for MES GBM. Cancer Res; 77(18); 4973-84. ©2017 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app