Journal Article
Review
Add like
Add dislike
Add to saved papers

Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment.

Natural pentacyclic triterpenoids (PTs) have been often reported to exhibit a wide range of biological activities. Among them, the anticancer and anti-inflammatory activities are the most studied. Over the last two decades, the number of publications reporting the anticancer effects of PTs has risen exponentially, reflecting the increasing interest in these natural products for the development of new antineoplastic drugs. Among of the most investigated PTs regarding their anticancer properties are oleanane-, ursane and friedelane-types, including oleanolic, glycyrrhetinic, ursolic and asiatic acids, and celastrol, among others. The extensive research in this field shows that the anticancer effects of PTs are mediated by several mechanisms, as they modulate a diverse range of molecular targets and signaling pathways, involved in cancer cell proliferation and survival. Considering the anticancer potential of this class of compounds, a number of semisynthetic derivatives has been synthetized aiming to improve their therapeutic activity and pharmacokinetic properties, and decrease their toxicity. Some of these new semisynthetic derivatives have shown improved anticancer activity in various cancer cell lines and animal models compared with the parent compound. Moreover, some of these compounds have been assessed in clinical trials, proving to be safe for human use. This review updates the most recent findings on the semisynthetic derivatives of oleanane-, ursane- and quinone methide friedelane-type PTs with anticancer activity. A brief introduction concerning the PTs and their anticancer activity is given, and the main semisynthetic modifications that have been performed between 2012 and early 2017 are reviewed and discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app