Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Retinoic acid, CYP26, and drug resistance in the stem cell niche.

The bone marrow niche is essential for hematopoietic stem cells to maintain lifelong blood production by balancing their self-renewal and differentiation. Hematologic malignancies have a similar hierarchical organization to their normal counterparts, with rare populations of cancer stem cells that rely on the microenvironment to survive and propagate their differentiated malignant progenitor cells. Cancer cells alter their microenvironment to create a supportive niche, where they endure chemotherapy, survive as minimal residual disease (MRD), and eventually prevail at relapse. Powerful morphogens, such as retinoids, Wnt/βcatenin, Notch, and Hedgehog, control stem cell fates across tissues, including normal and malignant hematopoiesis. The molecular conversations between these pathways and the mechanisms that control their activity and create gradients at cellular scale remain a mystery. Here, we discuss accumulating evidence suggesting that cytochrome P450 (CYP26), the primary retinoid-inactivating enzyme, plays a critical role in the integration of two of these molecular programs: the retinoid and Hedgehog pathways. Induction of stromal CYP26 by either one of these pathways limits retinoic acid concentration in the stem cell niche, with profound effects on tissue homeostasis and drug resistance. Bypassing this gatekeeping mechanism holds promise for overcoming drug resistance and improving clinical outcomes in hematological malignancies and cancer in general.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app