Add like
Add dislike
Add to saved papers

Below-cloud wet scavenging of soluble inorganic ions by rain in Beijing during the summer of 2014.

Wet deposition is one of the most important and efficient removal mechanisms in the reduction of air pollution. As a key parameter determining wet deposition, the wet scavenging coefficient (WSC) is widely used in chemical transport models (CTMs) and reported values have large uncertainties. In this study, a high-resolution observational dataset of the soluble inorganic aerosols (SO4 2- , NO3 - and NH4 + , hereafter SNA) in the air and in rainwater during multiple precipitation events was collected using sequential sampling and used to estimate the below-cloud WSC in Beijing during the summer of 2014. The average concentrations of SNA in precipitation during the observational period were 7.9 mg/L, 6.2 mg/L and 4.6 mg/L, with the contributions from below-cloud scavenging constituting 56%, 61% and 47% of this, respectively. The scavenging ratios of SNA (i.e., the ratio of the concentrations in rain to concentrations in the air) were used with the height of the cloud base and the precipitation intensity to estimate the WSC. The estimated WSC of SO4 2- is comparable to that reported elsewhere. The relationship between the below-cloud WSC and the precipitation intensity followed an exponential power distribution (K=aPb ) for SNA. In contrast to previous studies, this study considers the differences between the chemical compositions of the SNA, with the highest WSC for NO3 - , followed by those of SO4 2- and NH4 + . Therefore, we recommend that CTMs include ion specific WSCs in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app