Add like
Add dislike
Add to saved papers

Experimental Study of Anisotropic Stress/Strain Relationships of Aortic and Pulmonary Artery Homografts and Synthetic Vascular Grafts.

Homografts and synthetic grafts are used in surgery for congenital heart disease (CHD). Determining these materials' mechanical properties will aid in understanding tissue behavior when subjected to abnormal CHD hemodynamics. Homograft tissue samples from anterior/posterior aspects, of ascending/descending aorta (AA, DA), innominate artery (IA), left subclavian artery (LScA), left common carotid artery (LCCA), main/left/right pulmonary artery (MPA, LPA, RPA), and synthetic vascular grafts, were obtained in three orientations: circumferential, diagonal (45 deg relative to circumferential direction), and longitudinal. Samples were subjected to uniaxial tensile testing (UTT). True strain-Cauchy stress curves were individually fitted for each orientation to calibrate Fung model. Then, they were used to calibrate anisotropic Holzapfel-Gasser model (R2 > 0.95). Most samples demonstrated a nonlinear hyperelastic strain-stress response to UTT. Stiffness (measured by tangent modulus at different strains) in all orientations were compared and shown as contour plots. For each vessel segment at all strain levels, stiffness was not significantly different among aspects and orientations. For synthetic grafts, stiffness was significantly different among orientations (p < 0.042). Aorta is significantly stiffer than pulmonary artery at 10% strain, comparing all orientations, aspects, and regions (p = 0.0001). Synthetic grafts are significantly stiffer than aortic and pulmonary homografts at all strain levels (p < 0.046). Aortic, pulmonary artery, and synthetic grafts exhibit hyperelastic biomechanical behavior with anisotropic effect. Differences in mechanical properties among vascular grafts may affect native tissue behavior and ventricular/arterial mechanical coupling, and increase the risk of deformation due to abnormal CHD hemodynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app