Add like
Add dislike
Add to saved papers

Contribution of monoamine oxidases to vascular oxidative stress in patients with end-stage renal disease requiring hemodialysis.

Arteriovenous fistula (AVF) is the "lifeline" for patients with end-stage renal disease (ESRD) undergoing hemodialysis. AVF maturation failure is a poorly understood process, one of the contributors being endothelial dysfunction due to oxidative stress. Monoamine oxidases (MAOs) A and B were recently identified as novel sources of vascular oxidative stress. The aim of the present study was to assess the contribution of MAOs to the endothelial dysfunction in patients with ESDR with indication of hemodialysis. Fragments of brachial artery collaterals were harvested from ESRD patients during the surgical procedure aimed at creating the vascular access in the cubital fossa. The effect of increasing concentrations (10, 30, 100 μmol/L) of the irreversible MAO-A inhibitor, clorgyline, and MAO-B inhibitor, selegiline, on endothelial-dependent relaxation (EDR) in response to cumulative doses of acetylcholine was studied in isolated phenylephrine-preconstricted vascular rings. Hydrogen peroxide (H2 O2 ) production was assessed using ferrous oxidation xylenol orange assay. We showed that incubation of brachial rings with MAO inhibitors significantly improved EDR and attenuated H2 O2 generation in patients with ESRD. MAO-related oxidative stress might contribute to the primary dysfunction/non-maturation of the AVF and MAO inhibitors could improve maturation and long-term patency of the vascular access in dialysis patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app