Add like
Add dislike
Add to saved papers

A novel method for rapid and quantitative mechanical assessment of soft tissue for diagnostic purposes: A computational study.

Biological tissues often experience drastic changes in their microstructure due to their pathophysiological conditions. Such microstructural changes could result in variations in mechanical properties, which can be used in diagnosing or monitoring a wide range of diseases, most notably cancer. This paves the avenue for non-invasive diagnosis by instrumented palpation although challenges remain in quantitatively assessing the amount of diseased tissue by means of mechanical characterization. This paper presents a framework for tissue diagnosis using a quantitative and efficient estimation of the fractions of cancerous and non-cancerous tissue without a priori knowledge of tissue microstructure. First, the sample is tested in a creep or stress relaxation experiment, and the behavior is characterized using a single term Prony series. A rule of mixtures, which relates tumor fraction to the apparent mechanical properties, is then obtained by minimizing the difference between strain energy of a heterogeneous system and an equivalent homogeneous one. Finally, the percentage of each tissue constituent is predicted by comparing the observed relaxation time with that calculated from the rule of mixtures. The proposed methodology is assessed using models reconstructed from histological samples and magnetic resonance imaging of prostate. Results show that estimation of cancerous tissue fraction can be obtained with a maximum error of 12% when samples of different sizes, geometries, and tumor fractions are presented. The proposed framework has the potential to be applied to a wide range of diseases such as rectal polyps, cirrhosis, or breast and prostate cancer whose current primary diagnosis remains qualitative.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app