Add like
Add dislike
Add to saved papers

Oxygen-18 Isotopic Studies of HOOO and DOOO.

Owing to questions that still persist regarding the length of the O-H and central O-O bond, and large-amplitude torsional motion of trans hydridotrioxygen HOOO, a weakly bound complex between OH and O2 , new18 O isotopic measurements of HOOO and DOOO were undertaken using Fourier transform microwave and microwave-millimeter-wave double resonance techniques. Rotational lines from three new18 O species of DOOO (D18 OOO, DO18 O18 O, and D18 O18 O18 O) were detected, along with the two singly substituted18 O isotopic species of HOOO (HO18 OO and HOO18 O) that were not measured in the previous isotopic investigation. From a least-squares fit, spectroscopic constants, including the three rotational constants, were precisely determined for all five species. The inertial defect of DOOO and its18 O species is uniformly negative: of order -0.04 amu Å2 , regardless of the number or location of the18 O atoms, in contrast to that found for HOOO or its18 O isotopic species. A reanalysis of the molecular structure was performed using either normal HOOO and its four singly substituted isotopic species, the new DOOO data, or all the isotopic species (10 in total). The differences between the purely experimental (r0 ) structures are generally quite small, of order ±0.01 Å for the bond lengths and ±1° for the bond angle. The length of the O-H bond remains unrealistically short compared to free OH, and the central O-O bond length is consistently very close to 1.68 Å. On the basis of the effective O-H bond length derived from the experimental structure, the average displacement of the large amplitude torsional motion from planarity is estimated to be ∼22°.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app