English Abstract
Journal Article
Add like
Add dislike
Add to saved papers

[Effects of Low-magnitude Whole Body Vibration (WBV) on Knee Osteoarthritis in Rabbits].

OBJECTIVE: To determine the effects of low-magnitude whole body vibration (WBV) on the structure and function of subchondral trabecular bones, cartilage degradation, bone/cartilage turnover, and osteoarthritis (OA) joint function.

METHODS: Knee osteoarthritis model was established in 96 rabbits through left anterior cruciate ligament transaction (ACLT). The rabbits were randomly divided into six groups: ACLT control group, WBV+ACLT group (five subgroups, each comprising 16 rabbits receiving 5 Hz, 10 Hz, 20 Hz, 30 Hz and 40 Hz WBV, respectively, with 2-4 mm amplitude for 40 min/d and 5 d/week over a period of 8 weeks). Joint function was tested via weight-bearing asymmetry. The microarchitecture of subchondral trabecular bones was examined using vivo micro-computed tomography (micro-CT). Cartilage samples from knee joints were taken for gross morphology and histology examinations. Serum samples were taken to detect cartilage oligomeric matrix protein (COMP), C-terminal telopeptide of type Ⅰ collagen (CTX)-Ⅰ and urine CTX-Ⅱ.

RESULTS: Knee joint pain decreased with 10 Hz ( P <0.05) and 20 Hz WBV treatment ( P <0.05) , but increased with 40 Hz treatment ( P <0.05). The micro-CT results showed that articular cartilage increased first, peaked at 20 Hz, and then decreased ( P <0.05) . With increased frequency of WBV, the trabecular number, subchondral bone thickness and bone volume fraction increased, serum CTX-Ⅰ decreased, COMP and CTX-Ⅱ increased, especially at 20 Hz ( P <0.05).

CONCLUSION: Lower frequency (20 Hz) WBV can improve bone microstructure, increase bone turnover, delay cartilage degeneration and improve limb function of rabbits with OA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app