Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Peaks of in situ N 2 O emissions are influenced by N 2 O-producing and reducing microbial communities across arable soils.

Agriculture is the main source of terrestrial N2 O emissions, a potent greenhouse gas and the main cause of ozone depletion. The reduction of N2 O into N2 by microorganisms carrying the nitrous oxide reductase gene (nosZ) is the only known biological process eliminating this greenhouse gas. Recent studies showed that a previously unknown clade of N2 O-reducers (nosZII) was related to the potential capacity of the soil to act as a N2 O sink. However, little is known about how this group responds to different agricultural practices. Here, we investigated how N2 O-producers and N2 O-reducers were affected by agricultural practices across a range of cropping systems in order to evaluate the consequences for N2 O emissions. The abundance of both ammonia-oxidizers and denitrifiers was quantified by real-time qPCR, and the diversity of nosZ clades was determined by 454 pyrosequencing. Denitrification and nitrification potential activities as well as in situ N2 O emissions were also assessed. Overall, greatest differences in microbial activity, diversity, and abundance were observed between sites rather than between agricultural practices at each site. To better understand the contribution of abiotic and biotic factors to the in situ N2 O emissions, we subdivided more than 59,000 field measurements into fractions from low to high rates. We found that the low N2 O emission rates were mainly explained by variation in soil properties (up to 59%), while the high rates were explained by variation in abundance and diversity of microbial communities (up to 68%). Notably, the diversity of the nosZII clade but not of the nosZI clade was important to explain the variation of in situ N2 O emissions. Altogether, these results lay the foundation for a better understanding of the response of N2 O-reducing bacteria to agricultural practices and how it may ultimately affect N2 O emissions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app