Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Folic acid modulates cancer-associated micro RNAs and inflammatory mediators in neoplastic and non-neoplastic colonic cells in a different way.

SCOPE: Scientific evidence suggests that folic acid (FA) supplementation protects the healthy colonic mucosa from neoplastic transformation but may promote the progression of precancerous lesions. The underlying molecular mechanisms are not fully understood. Therefore, we explored, if high physiological FA doses provoke changes in (i) promoter-specific DNA methylation (ii) expression of cancer-associated micro RNAs (miRNAs) and (iii) inflammatory mediators in human neoplastic and non-neoplastic colonic cell lines.

METHODS AND RESULTS: The malignant and the non-malignant colonic cell lines HT29 and HCEC were adapted to different near-physiological FA concentrations. Using DNA methylation and pathway specific PCR arrays, high-physiological FA concentrations revealed no relevant impact on promoter methylation but a number of differences between the cell lines in the expression of miRNAs and inflammatory mediators. In the HCEC cell line pro-inflammatory genes were repressed and the miRNA expression remained nearly unaffected. In contrast, in the HT29 cell line tumour-suppressive miRNAs were predominantly down-regulated and the expression of genes involved in chemotaxis and immunity were modulated.

CONCLUSION: The different effects of high-physiological FA concentrations in malignant and non-malignant colonic cell lines regarding cancer-associated miRNAs and inflammatory mediators may contribute to the different effects of FA supplementation on colonic carcinogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app