JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Minimal modulation of the host immune response to SIS matrix implants by mesenchymal stem cells from the amniotic fluid.

PURPOSE: Surgical restoration of soft tissue defects often requires implantable devices. The clinical outcome of the surgery is determined by the properties inherent to the used matrix. Mesenchymal stem cells (MSC) modulate the immune processes after in vivo transplantation and their addition to matrices is associated with constructive remodeling. Herein we evaluate the potential of MSC derived from the amniotic fluid (AF-MSC), an interesting MSC source for cell therapeutic applications in the perinatal period, for immune modulation when added to a biomaterial.

METHODS: We implant cell free small intestinal submucosa (SIS) or SIS seeded with AF-MSC at a density of 1 × 105 /cm2 subcutaneously at the abdominal wall in immune competent rats. The host immune response is evaluated at 3, 7 and 14 days postoperatively.

RESULTS: The matrix-specific or cellular characteristics are not altered after 24 h of in vitro co-culture of SIS with AF-MSC. The host immune response was not different between animals implanted with cell free or AF-MSC-seeded SIS in terms of cellular infiltration, vascularity, macrophage polarization or scaffold replacement. Profiling the mRNA expression level of inflammatory cytokines at the matrix interface shows a significant reduction in the expression of the pro-inflammatory marker Tnf-α and a trend towards lower iNos expression upon AF-MSC-seeding of the SIS matrix. Anti-inflammatory marker expression does not alter upon cell seeding of matrix implants.

CONCLUSION: We conclude that SIS is a suitable substrate for in vitro culture of AF-MSC and fibroblasts. AF-MSC addition to SIS does not significantly modulate the host immune response after subcutaneous implantation in rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app