Add like
Add dislike
Add to saved papers

The augmented lipid productivity in an emerging oleaginous model alga Coccomyxa subellipsoidea by nitrogen manipulation strategy.

The lipid productivity controlled by both of biomass and lipid content was really crucial for economic-feasibility of microalgae-based biofuels production. This study attempted at augmenting lipid productivity in an emerging oleaginous model alga Coccomyxa subellipsoidea by different nitrogen manipulation including one-stage continuous N-sufficiency (OCNS), N-deprivation (OCND), N-limitation (OCNL), and also two-stage batch N-starvation (TBNS). Amongst four tested nitrogen manipulation strategies, OCNS performed remarkable promoting effect on cell metabolic growth and the maximum biomass was achieved by 7.39 g/L. Whereas TBNS regime induced the highest lipid content (over 50.5%). Only OCNL treatment augmented the lipid productivity by 232.37 mg/L/day, representing 1.25-fold more than TBNS and even as much as 5.06-fold more than that of OCND strategy. OCNL also strengthened the proportions of saturated (C16:0 and C18:0) and monounsaturated fatty acid (C18:1) which were inclined to high-quality biofuels-making. This might be due to that most part of energy and metabolic flux (e.g. acetyl-CoA) derived from TCA cycle and glycolysis flowed into fatty acids biosynthesis pathway (especially C18:1) response to OCNL manipulation. This study represented a pioneering work of utilizing OCNL for lipids production by C. subellipsoidea and clearly implied that OCNL might be a feasible way for algal lipid production on a commercial scale and also promoted the potential of C. subellipsoidea as an ideal biodiesel feedstock.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app