Add like
Add dislike
Add to saved papers

Local blockage of self-sustainable erythropoietin signaling suppresses tumor progression in non-small cell lung cancer.

Oncotarget 2017 July 19
Functional significance of co-expressed erythropoietin (EPO) and its receptor (EPOR) in non-small cell lung cancer (NSCLC) had been under debate. In this study, co-overexpression of EPO/EPOR was confirmed to be positively associated with poor survival in NSCLC. The serum EPO in 14 of 35 enrolled NSCLC patients were found elevated significantly and decreased to normal level after tumor resection. With primary tumor cell culture and patient-derived tumor xenograft (PDX) mouse model, the EPO secretion from the tumors of these 14 patients was verified. Then, we proved the patient derived serum EPO was functionally active and had growth promotion effect in EPO/EPOR overexpressed but not in EPO/EPOR under-expressed NSCLC cells. We also illustrated EPO promoted NSCLC cell proliferation through an EPOR/Jak2/Stat5a/cyclinD1 pathway. In xenograft mouse model, we proved local application of EPO neutralizing antibody and short hairpin RNA (shRNA) against EPOR effectively inhibited the growth of EPO/EPOR overexpressed NSCLC cells and prolonged survivals of the mice. Finally, EPO/EPOR/Jak2/Stat5a/cyclinD1 signaling was found to be a mediator of hypoxia induced growth in EPO/EPOR overexpressed NSCLC. Our results illustrated a subgroup of NSCLC adapt to hypoxia through self-sustainable EPO/EPOR signaling and suggest local blockage of EPO/EPOR as potential therapeutic method in this distinct NSCLC population.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app