Add like
Add dislike
Add to saved papers

PARP2 deficiency affects invariant-NKT-cell maturation and protects mice from concanavalin A-induced liver injury.

Excessive or persistent inflammation and hepatocyte death are the key triggers of liver diseases. The poly(ADP-ribose) polymerase (PARP) proteins induce cell death and inflammation. Chemical inhibition of PARP activity protects against liver injury during concanavalin A (ConA)-induced hepatitis. In this mice model, ConA activates immune cells, which promote inflammation and induce hepatocyte death, mediated by the activated invariant natural killer T (iNKT) lymphocyte population. We analyzed immune cell populations in the liver and several lymphoid organs, such as the spleen, thymus, and bone marrow in Parp2 -deficient mice to better define the role of PARP proteins in liver immunity and inflammation at steady state and during ConA-induced hepatitis. We show that 1) the genetic inactivation of Parp2 , but not Parp1 , protected mice from ConA hepatitis without deregulating cytokine expression and leucocyte recruitment; 2) cellularity was lower in the thymus, but not in spleen, liver, or bone marrow of Parp2-/- mice; 3) spleen and liver iNKT lymphocytes, as well as thymic T and NKT lymphocytes were reduced in Parp2 knockout mice. In conclusion, our results suggest that the defect of T-lymphocyte maturation in Parp2 knockout mice leads to a systemic reduction of iNKT cells, reducing hepatocyte death during ConA-mediated liver damage, thus protecting the mice from hepatitis. NEW & NOTEWORTHY The genetic inactivation of Parp2, but not Parp1, protects mice from concanavalin A hepatitis. Immune cell populations are lower in the thymus, but not in the spleen, liver, or bone marrow of Parp2-deficient mice compared with wild-type mice. Spleen and liver invariant natural killer T (NKT) lymphocytes, as well as thymic T and NKT lymphocytes, are reduced in Parp2-deficient mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app