Add like
Add dislike
Add to saved papers

Fat-containing cells are eliminated during Dictyostelium development.

Biology Open 2017 September 16
Triacylglycerol is a universal storage molecule for metabolic energy in living organisms. However, Dictyostelium amoebae, that have accumulated storage fat from added fatty acids do not progress through the starvation period preceding the development of the durable spore. Mutants deficient in genes of fat metabolism, such as fcsA, encoding a fatty acid activating enzyme, or dgat1 and dgat2, specifying proteins that synthesize triacylglycerol, strongly increase their chances to contribute to the spore fraction of the developing fruiting body, but lose the ability to produce storage fat efficiently. Dictyostelium seipin, an orthologue of a human protein that in patients causes the complete loss of adipose tissue when mutated, does not quantitatively affect fat storage in the amoeba. Dictyostelium seiP knockout mutants have lipid droplets that are enlarged in size but reduced in number. These mutants are as vulnerable as the wild type when exposed to fatty acids during their vegetative growth phase, and do not efficiently enter the spore head in Dictyostelium development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app