Add like
Add dislike
Add to saved papers

The probability of wing damage in the dragonfly Sympetrum vulgatum (Anisoptera: Libellulidae): a field study.

Biology Open 2017 September 16
Dragonfly wings resist millions of cycles of dynamic loading in their lifespan. During their operation, the wings are subjected to relatively high mechanical stresses. They further experience accidental collisions which result from the insects' daily activities, such as foraging, mating and fighting with other individuals. All these factors may lead to irreversible wing damage. Here, for the first time, we collected qualitative and quantitative data to systematically investigate the occurrence of damage in dragonfly wings in nature. The results obtained from the analysis of 119 wings from >30 individual Sympetrum vulgatum (Anisoptera: Libellulidae), collected at the second half of their flight period, indicate a high risk of damage in both fore- and hindwings. Statistical analyses show no significant difference between the extent of damage in fore- and hindwings, or between male and female dragonflies. However, we observe a considerable difference in the probability of damage in different wing regions. The wing damage is found to mainly result from two failure modes: wear and fracture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app