Add like
Add dislike
Add to saved papers

Mass Spectrometry Analysis of Human CB2 Cannabinoid Receptor and Its Associated Proteins.

Studying the assemblies and dynamics of the complex formed by cannabinoid receptors and their associated proteins is important for understanding the molecular basis for the functions of these receptors. In the absence of the crystal structures of these macromolecular complexes, mass spectrometry is a sensitive technique that can be used to study cannabinoid receptors and their associated proteins. In this chapter, three aspects of the work are presented: (1) mass spectrometry analysis of the primary sequence of the human CB2 cannabinoid receptor after affinity chromatography purification of the receptor proteins, (2) functional proteomic analysis of CB2-associated proteins coimmunoprecipitated with CB2, and (3) chemical cross-linking and mass spectrometry analysis of CB2-G protein complex. The mass spectrometry approaches, in combination with mutagenesis and molecular modeling techniques, have been successfully used for studying the CB2-G protein complex. Similar approaches can also be applied for studying other G protein-coupled receptors in general.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app