Add like
Add dislike
Add to saved papers

Effects of sub-chronic exposure to terbuthylazine on DNA damage, oxidative stress and parent compound/metabolite levels in adult male rats.

Terbuthylazine is a selective pre- and post-emergency chloro-triazine herbicide used for a broad spectrum of weed control. We evaluated the potential of low doses of terbuthylazine to induce oxidative stress and cytogenetic damage in peripheral blood samples of adult male Wistar rats. Following 28-day repeated oral exposure at 0.004 mg/kg b.w./day, 0.4 mg/kg b.w./day and 2.29 mg/kg b.w./day, parameters of lipid peroxidation, total antioxidant capacity, and activities of antioxidant enzymes were measured in blood samples. Alkaline comet assay on leukocytes and erythrocyte micronucleus assay were used to measure DNA damage. In addition, the concentration of terbuthylazine and its metabolite in urine and plasma were determined using high performance liquid chromatography with UV diode-array detector (HPLC-UV-DAD). The fraction of terbuthylazine excreted in urine was negligible and was not found in plasma. Deethylterbuthylazine was only compound detected in plasma samples. Exposure to terbuthylazine did not induce significant lipid peroxidation products. The significant changes in antioxidant enzyme activities and the elevated total antioxidant capacity indicated that terbuthylazine at experimental conditions applied has potential to disturb oxidative/antioxidant balance. Results regarding the alkaline comet assay as well as micronucleated reticulocyte frequency indicated that treatment led to low-level DNA instability. Our results call for further research using other sensitive biomarkers of effect, along with different exposure scenarios.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app